Intelligent Control of Electric Scooters

نویسندگان

  • D. T. Lee
  • S. J. Shiah
چکیده

Most of the present day electric scooters are equipped with a voltage-driven DC motor powered by four 12-volt leadacid batteries and a hand-lever accelerator operated by the rider to control their speed. Because of the nonlinear battery discharge characteristics and different driving behaviors of riders, it is not easy to tell how much electric power remaining in the battery and how far the electric scooter can travel before the battery has to be re-charged. As a result, the reliability of the electric scooter is lacking. To tackle this problem and to enhance the capabilities of present electric scooters, we propose an intelligent control system that not only can control the speed of the electric scooter, but also can provide information about residual electric power in the battery system by monitoring its power consumption. This system consists of both motor driver control and energy management subsystems. The driver control subsystem is implemented as a closed-loop speed control system by using a muscle-like control law with excellent compliant property. The energy management subsystem is implemented by learning modules based on fuzzy neural networks and cerebellar model articulation controller networks, which can estimate and predict nonlinear characteristics of the power consumption of batteries and electric scooter dynamics. With this battery power monitoring subsystem the rider will be provided information regarding an estimated traveling distance at a given speed, and the maximum allowable speed to guarantee safety arrival at the destination with the residual battery capacity. Experimental results show that the performance of electric scooters can be improved substantially.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Intelligent Control of Plug-in Fuel Cell Electric Vehicles in Smart Electric Grids

In this paper, Plug-in Fuel Cell Electric Vehicle (PFCEV) is considered with dual power sources including Fuel Cell (FC) and battery Energy Storage. In order to respond to a transient power demand, usually supercapacitor energy storage device is combined with fuel cell to create a hybrid system with high energy density of fuel cell and the high power density of battery. In order to simulate the...

متن کامل

Application Flatness Technique for Intelligent Control of a New Electric Energy Source

In this paper, an intelligent control strategy based on combination of the “flatness based control technique” and the “perturbation and observation (P&O) MPPT algorithm” is developed and investigated to control a hybrid electric energy source (HEPS). This EHPS is composed of a fuel cell system (FC) and a solar panel (SP), as the main source and a supercapacitor bank (SC), as the auxiliary sourc...

متن کامل

Intelligent Power Control of Green Building-Integrated of Fuel Cell and Plug-in Electric Vehicle in Smart Distribution Systems

The renewable energy sources and plug-in electric vehicles (PEVs) are becoming very popular because of the combination of high fuel costs and concerns about emission issues. This paper presents modelling and control of a Building Integrated Fuel Cell and Plug-in Electric Vehicles (BIFC-PEV) in smart distribution systems. In BIFC-PEV system, conventional building elements could be replaced by sp...

متن کامل

Electric drives for light e-scooters

In the next years is expected an important rise in sales of electrical scooters in the entire world but especially in China. In order to address this challenge the electric scooter industry has to be more competitive in the transportation market and therefore important improvements, in terms of energy density and costs, have to be done in the electric storage system and in the electric propulsi...

متن کامل

A Novel Intelligent Energy Management Strategy Based on Combination of Multi Methods for a Hybrid Electric Vehicle

Based on the problems caused by today conventional vehicles, much attention has been put on the fuel cell vehicles researches. However, using a fuel cell system is not adequate alone in transportation applications, because the load power profile includes transient that is not compatible with the fuel cell dynamic. To resolve this problem, hybridization of the fuel cell and energy storage device...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002